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FOREWORD

The work reported in this document was performed by The MITRE
Corporation, Bedford, Massachusetts, for Electronic Systems Division,
Air Force Systems Command under Contract AF 19(628)-2390. This in-
formation was originally published in Working Paper W-7550, The MITRE
Corporation, February 1965.
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ANTHONY P. TRUNFIO, Technical Advisor
Development Engineering Division
Directorate of Planning and Technology
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ABSTRACT

An approach to digital nonlinear prediction is proposed and analyzed.
The basic relations are developed. The nonlinear operator is obtained by
quantization of the data.

The model is developed in terms of occupancy of data cells in N-space.
Extensions to increase occupancy and reduce error are formulated. Illus-
trative results are included.

A comparison with linear techniques is made and over-all conclusions
on error, quantization level, length of data required, time invariance, etc.

are provided.

iii



TABLE OF CONTENTS

Page
1 . O INTRODUCTION * ® L] * * * . * ® [ ] [ ] * [ ] * * * * * [ ] [ ] ]

2.0 THE MODEL ® o o o o & 8 o 6 o s o o 6 8 & 8 o & o 1
3.0 QUANTIZATION AND REALIZATION . ¢ « ¢ o ¢ « o o o o o 4
3.1 Quantization Error and Data Calibration . . . . /.
4.0 METHODS OF ESTABLISHING ALL OCCUPANCY. . . « o « o o 11
Gl. Methiod Bf o & & @ 5 w6 1ol o1 o o o0 w1 o8 @ Ger @ @ Ter s L
b2 Hetheod & « o0 @ wwwaea o6 @ . » 4 & @ @ ¢ @ &
4.3 Model C R T T e r R L.
4.4 Adaptive Controle « ¢ o o o o ¢ ¢ o o ¢ o o o o 15
4.5 Population of Cell Occupanciese « « « o« ¢ o« o o 16
4.6 Comparison of Methods A and B - =« « ¢« ¢ & « « o 17
5.0 GENERAL LINEAR PREDICTOR « « « o o o o o o o o o o o L7
6.0 OBSERVATIONS, REMARKS, AND CONCLUSIONS . « « « o o o 19
6.1 BANGAL 1o o o wa) 16 15 & o w0 el kal of e e den fe jen et o e 4D
6.2 Hoblinedr = » « w & o 0 o W & & @ & s &% @ » s 49

6.3 Linear versus Nonlinear « « + « o« o o o o o « o 20

REFERENCE S P O S B SR SRS B .



1.0 INTRODUCTION

Methods to effect statistical prediction have involved poly-
nomial fitting and correlation and/or spectral analysis. Both can use
a minimum mean square error criterion and result in a set of weights
as an optimum linear operator. In both cases, calculations of the
weights based on knowledge or computation of the pertinent statistics
is made.

Our concern here is with a non linear approach which involves
any intermediate determination of the statistics. It also offers a
readily available means for judging error and adjusting for an improved
prediction. Being a non linear method, the results should be at least
as good as a corresponding linear technique.

To obtain the desired non linearity, a quantization of the
data is required. Of course such a quantization itself degrades the
error possible with the technique. The technique as applied to digital
simulation forms a variation on an approach discussed in Reference 1.

*
We now discuss the approach.

2.0 THE MODEL

We let t be the present time and T the total interval of
data for processing. We let o be the time advance of prediction.
Without loss of generality, we take the data interval as [0, T] and
consider the usable past at any t from t to t - ay-, . For equally
spaced sampled data ay-, = (N-1)8 where &0 1is the sampling interval.

These definitions may be summed up in the following sketch

Author's Note

*The work reported here was originally considered by the author in
the summer of 1960.while at S.T.L. Other matters prevented a proper
evaluation and summary at that time. The present report represents
a current effort to fill this need.
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Prediction Range

Let the continuous parameter time series be X(t). We then estimate
X(t+a) by
X* (t+a), the predicted value at t+a using X(0); Ost
In the sampled finite past case we have
X*, (t+a) , the predicted value at t+a using X(t-aj); i=o, 1, "7, N-1
i.e. by e, s, %z s X-(y-1)}).
Although 4; a=ajy;-aj may not be equal, nuthing is lost by assuming so,
since the average value of the fa is constrained by the sampling theorem.
We take
X* (t+a) = F [X(t), X(t-8), ", X(t-ay-1) | where
F is a time dependent non linear function. In this case we can always
make the instantaneous square error € = <?(t+a) -~ ELRCEY, Ble-an Vs = s
X(t-ay 1) ] P = o.
However since F is to be used when X(t+a) is not available, it is better
not to have F time dependent. Hence we consider a range of times over
which a time invariant operator F must minimize the mean squared error

given by
1-a
e = f (X(e+a) - FIX(E), X(t-a)," ", X(t-ay 1) ]7de
B ay -1

with [ay, T - ] the maximum range over which to consider error or in
other words over which we can distinguish a 'present' value. In the

above B =T - & - ay., . As seen the value of X* (t+0a) depends on the
Q



number, N, of data points used in the memory.
We replace v F by an infinite series of terms whose orthogonality

is invariant to X. Thus,
[--]

F= T An @n[xu), X(t-ay), ..., X(t-ay_ )]

-0

where, independent of X values,

e -] e lls [la=yn=n
L Wy =0; n#m

——
23

Then minimum ¢,  gives, using dex® = 0 and the orthogonality of the
oA
n
{a}
{s3,

T-q
A = 1 J X(t+a) & [ ]dt

T-a-ay _, an_,

=Xgn = <X, 3§ >

2
o o

It is impossible, however, to have completeness using such a represen-
tation on any X(t) (i.e., for continuous valued X). However, quantization
of X provides a realization of the dgsired orthogonal set for all X(t).

In other words quantizing X allows construction of a {@n} set for all X,
the approximation being dependent on the fineness (degree) of quantization

As X is more finely quantized, the

F(x(t), ... , X(t-ay_ )] ~zA & [X(t), ..., X(t-ay_)]

for any X(t) with the {@n} orthogonal and independent of X.

t See Reference 1
= 3=



The orthogonality depends however on the range Ba, chosen. We then have

™
I

i E13_<1 J":-al (x(era) - § A%, [ DZdc
N -

"

% (IT-G X (t+a)dt - Z)Zo BHAQ

anN -1

T-a

_ (IT'“ X (eta)dt - & ([ X(t+a) 8, d)>>
'B— T © T-g-Ba )
- -a-B, Bn
. ‘T-o
with Bn = 2
T8 én° dt

We see that Ap represents the projection of predicted X values

in the ¢, direction of the {@“} space. Thus eq? compares the true

sTE= 2 . 2
value B X (t+a)dt  with g <%2 A® where Bn represents the
B, o "o

probability of getting Ap over Ba. For a fixed t, X(t+a) is estimated

by a single A for some p.

3.0 QUANTIZATION and REALIZATION

If for each n, the ¢ (X(t), X(t-0), +-+, X(t-ay_1)] =1
or 0 as a function of the N - dimensional argument of X values, then
B = Xé@nl is a conditional expectation. That is the average of
n
X(t+a) conditioned on the occurrence of @n(t) = 1 as t varies over Ba
and B, counts the number of such occurrences. Let us now consider for

equally spaced data the N - dimensional space of {X(t-k&)IN-*  values.
o

Let each X(t-k8) range be divided into Q quantum each of width q as shown.



X(t-38)
Total number of
t
X(t) quantum cells in

X-space is QY.

X(t-28)
. X(t-8)
Let n = 1, 2, 3, ,
- N -1
We take ¢ [{X(t-18)}, ] =1 if {X}g € cell n
=0 if {X}07 ¢ cell n

Thus if @n occurs at t then we take An as X*(t+q) and An is calculated
as average of X(t'+a) values at all t' < t times when @n occurs. The
[@n} set remains fixed only if the cell structure in N-space does. We

note that the orthogonality of the {@n} is independent of the t range of

integration. Also since < ¢ ,% > = 0 only if §, = 0, the
A, ==X, $n > are bounded
< $n,%n >
The normality condition T-a . ; Ty
J;J $:° () dt = A_J by dt
Ba T-a-8 Ba: y
o T-a-Ba

depends on the X values that is which member of the ensemble is chosen and

$

the span of calculation Ba. We see that —2 } produces an orthonormal

8

n

set; B, = [8.,%8.].

It is useful to rewrite the formulae for An and ed% in a style which

reflects the cell matching imposed by the quantization as reflected by



the {@n} set.

A = X (t+q)dt .
= J x (ti’d+a)dt

0 Tn

where T_ = {tj: n [t] =1, t € [ay-y, T-a]} so that

An = y(t+a) conditioned an occurrence of cell n.
Nn
= 5 X(ty+o) for sampled data
i=1
N
n
QN
and T ?n = Ba for a fixed cell structure over tie[aN_l, T-a]
n=
N -1
so that any {x}o sequence can be in no more

than one cell.
N~1
For non-multiple use of data sets {Xjo but allowing overlapping cells

the total number of matches is still Ba, However the orthoganality of

the @n sct and the expressions for A and € 2

a previously developed

rely on the cells in N-space being non-overlapping.
We also have
X*(ttq) = TApS = il ¢ (£) =1, t efay~ ,T-a)}
1<n=QV
and

8
o




Incidentally we may view the quantization as a means to set up a
special set of orthoganal functions for any X by writing ¢ as a
product given by

$
Finally ¢,° = (X(t+a) - F[ P = (X(t+a) - A $ )7
which can be written (X(t+a) - ZAd - (F[ ] - TAnd0))"

or  (X(t+ba) - F - (TApd, - F))?
These forms indicate two kinds of errors.
(1) Optimum F is not sufficient, i.e. future not predictable
from the past (not usual).
(2) ZAnQn is not a good enough approximation,
i.e, orthoganal set not complete.
For §, derived via quantization, the level q plays a roll in (2)
and indeed contributes a quantization error as well.
Finally we remark that when F = F(t) that is the ¢ are changing

with t, the number of possible A, = number of possible cells > Qv
3.1 Quantization Error and Data Calibration

Given a joint distribution over data, we can always construct an
orthonormal function set relative to the diatribution. For example,
if X is normally distributed, we choose the @n asg Hermite polynomials.
In dealing with time series we interchange time and ensemble averages
with time averages taken over sufficiently long data stretches
providing the proceas ias ergotic and so atationary. With X normal,

the optimum predictor is a linear one, This result can serve as a

n)m:k, e ,LEX(t) ,X(t'81 ) ’ e ,X(C'HN -1 ) ].@n[){(t) ]ém[x(t'al ) ] vee



reference to the non-linear models.
Approximating F via quantization gives

A, =< X8 3L >

where L is the peak to peak signal variation in the interval used.
We choose the quantum step q so as to produce the desired e? and
divide the X range into Q = L/q quantum steps.

L/2

AVG. Value

_L/z

Quantization thus converts X(t) into a step function S(t) where any

step level S, results from X values given by Si-q/QSX<S{+q/2. The

i

quantization error, e, is a random variable with the X distribution and
-q/5 2 e < q/;. With q small enough we assume that e is
approximately uniformly distributed in any one interval so that the

2

phase (ensemble) average of e® is given by

/2 )
lj ede = 2 ¢ = ¢¢/12
d -q/5 q 3x8

5

If we assume 1024 divisions for + or - values (a representative value

AVG. (%)

for some A-D converters) then Q = 2048 and

AVG, (e%) ~<Lw>
2

Thus writing the mean square error of quantization as K qa,K,éiconstant,



<

Eg 2 K q

the mean square error in the predictiomr model

From

—rlT—a
@ g

- , Q
¥ T = X (t+a)dt - B A°
Ba Q

T-a-Ba
if quantization level q is too large, A, - X for some single n=ng

and A~ o, n= ny Bp, = By,

-3 T-a _
e ~0 (%J (X(e+a) - 0%  dt) ~ 0(K'q?) , K' > K,
@ T-g-Ba

Of course €° may be large with q small for operator F not near
optimum.

It is well known that in general the non-linear operator extends
bandwidth due to intermodulation of components. Also, if we considerx

quantization error in N-space as a distance 4, then

- /N
dmax z qi2 with qi the quantum level in the ith dimension.
i=1

If q; = q for all i,
- NAYE -
d e = @) N<q

For preserving constant distance (error), we have

qN

Z I»—l
[Nl

N =l
so that the more past samples used to form a data set {x} , the

smaller q required to maintain the quantization error.
With a, Ba,N,q variable there is a range of possibilities with

various influences on ead.

As N increases, q should decrease. With decreasing q and increasing



N the Bn, number of matches over Ba, should drop. This means that the
number of matches of data sets {X(t'}g-1 to some reference set
{X(t)]g—l, t' < t decreases. Thus although quantization error may be
fixed, variability of the estimate of an A, (associated with {X(t)g-l]
may rise due to the reduced number of matches. In general we desire
as many cell matches as possible at each t.

For example, unless q is large (and so larger prediction errors) or
a trend sensitive parameter, such as conditional expectation function, is
used, no reasonable prediction can be made on trend type data since
obtaining cell matches becomes difficult or impossible.

One method to increase number of cell occupancies involves using
multiple use of data and/or overlapping cell structure with time.

These procedures allow for time varying {@n] sets and form a degression
from the theory presented above. Details of implementing such
procedures are discussed in the next section.

Another way to improve cell matching is to deal with essentially
trend free data using polynomial interpolation techniques. Simple
linear calibration may be sufficient.

The calibration of the input data can be given as

X(t) = ay(t)+b = L(y)
where L represents a linear operation a(#o) and b are known factors
which can be time varying.

In the prediction model we operate an X(0), g < t with F to give

X*(t+a) so that in a 1:1 manner we have

y*(t+a) = X*(t+a)-b

a

-10-



4.0 METHODS OF ESTABLISHING CELL OCCUPANCY
As noted above we desire models which increase cell occupancy.
This involves basically
1. defining the cell structure
2. establishing occurrence of occupancy
W: row discuss three variations on dealing with these two factors.
1) This definition establishes from the next new data set left
from the {ng-l data sets remaining after having filled all previous
cells set up. This allows no multiple use of data and reduced amount
of cell overlap. A data set defining a cell is taken as the center
of the cell. In order to maximize the number of cell prediction the
data sets are used starting first with the data set associated with
the current time, t. The total number of sets equals Ea.
© 2) This is a variation on (1) which allows multiple use of any
set [X}E—I for matching except those previously used as cell centers.
Thus both multiple use of data and cell overlap occurs. We have
K(number of cells setup) = By < % dnj = total number of sets used

j=l N =1

in the K setup cells where d,; = number of matching {Xjo sets

nj
into cell setup at ns.

If we could essentially assume no cell overlap that is a fixed

{3n} set (fixed cell structure) then for (1) and (2) we would have

SR K
s =1 T (x(ti_+a)-AiJ.)2
K j=1 j
" di ()
Aj. =1___ T X(tijso)

dg;(@ ij=1

o



3) Another variation takes all past sets as cell centers so

that K = Ba' This method gives more cell overlap and multiple
use of data but maximizes cell occupancy at each t in fay-;,T-a]
and places the center of the cell for t at {X(t)Jg—l at each t.
Briefly in summary (1) tends to minimum occupancy (overlap) with
the maximum of these at current time t while (3) produces maximum
occupancy (overlap). We call Method A, Approach 3) and Method B,
Approach 1) together with cells held non-overlapping. We first

discuss Method B for E:cjd and Ap. We also include another

variation called Model C.

4.1 Method B
With fixed cell structure that is {Qn} set fixed, we have from
before,
2 _ . ® m_ 2
a 1—<JT ¢ ¥ (tha)dt - I QT & X()d, [ ]dt))
Ba T o T-G'Ba
_a_sa
Bn
with sampled (discrete time series) data
€a =i _1.__ 2 (z (X(tjk+a) = AJk) ); Ba = z nk(a)
~ k=1 J=]_ k=1
Ba.
~ B nk
with An, = 1/Ba'§ X(tqta) g = Z X(tjta)
j=1 |=1
1/8, £ &
g1 3
so that E
pais a = K 35 3
. o <§1 Ee o)l = kzl By Jk>

n
Ba

=0=



[

B n
= 1 (z X2 (t ) - Z [z X(tjk-hx)]l>
g n=1 k=1 j=1

a
"k

The matchings (for each @) to the cell setup by past set {X(T)]g‘l

taken at present time T(i.e., nT) produce AnT as X*(T4o0) for each q.

4,2 Method A

~

As noted, the method sets up each of the Bq data sets as centers

for cells. The approach thus allows multiple use of any data set

{x}8°* and overlapping cell structures.

Now,
st B'c. E
CWiglh v [x(t +)-A 2 = 1 z (%2 (t L) -2X(t _+a)A +A 2]
[0} - fis n n -~
By, n=1 Ba n=1

for each of the %&, n=1,2,...,§& where we take

(@) 8, _
&= 1 L OX(t, t) L 1L =z B
" 1 (@) j=1 gt n=1 " -

Then, without orthogonality effects allowed since the {@n} sets

correspond to overlapping cells,

B 1 -}
e 04 - n n
e =1 X 2(t ) -2X(t {w) T X(t, W)+ [ T X(t, +a)
o e n n S jn P in
8 1 ji=1 j=1
o %

«13=



4.3 Model C

In order to increase further the number of occupancies and so

hopefully reduce aa? averaged over q for Q@ min < a < a max, for the
cell specified at the current T value, we consider sequentially
{X(T-jé)}:-1 as potentially equivalent {X(T)}ON-1 data sets with
adjusted a valuesT. This is valuable when {X(t)}z—l has none or

few matches. For @ the data sets then used for equivalent prediction
points are those at t < T-a. We designate the corresponding data
sample numbers as n; and nr where tj = T-a-jd where § is the data
spacing.

Thus, at @ using the set at nTj’ we use aj = q+jd, j = 0,1,...,R
and look for occupancy of the cell determined by {X(T-jé}o o by the
sets {X(t)}:-l, t <T - jb that is for n < nTjH

At j the maximum O value possible as in previous methods is de-

NI

termined by ey nTj-n where n are the matching data sets {X}o

X.

]
. i £ N-l . I3 3 = 2
to {X(T 36)}0 s The minimum ¢ in amln‘ 16k
]
We take a
maxj
ey & 1 z eajg for each j.
4 s=
0'ma‘x, @] 0~minj

Then we choose the n;, and associated matching sets which give min ¢,
] j
and calculate the A set for the @ . <a, <a corresponding to
n min, max,
|
the a. If g <aQ , then for n;, < n;, we choose the next lowest
max, max J ]

]

€. which has ¢ >Q . The process is repeated until Q =q
j max max, max max

] ] ]
or the j range is depleted.

t Of course increased occupancy must be weighed against basically higher

€a? as @ increases.

o



4.4 Adaptive Control

As we have seen, parameters N, q, Ba influence ea?. It is thus
useful to have criterion, even if only crude, by which to judge such
effects.

We have noted the error amplitude resolution in the sampling
process is q°2/12 where q, is the amplitude resolution or imposed

qudntization range q. For example, with binary data and q = Zk,

the error is 4k-l/3.
Referenced to the original (unquantized) data before sampling

and excluding other error sources, the total error esror is approxi-

mately ea? + q®/12 with

B

a
0ose? s _1 J T0 W(ttydt 1 T X (t )
Ba T-G.-Ba s n=1
ol
Thus, we may usually expect
gﬁ
®/12 2 ¢ <q?/12+1 g X(t ta)
ToT E’ n=1 n
o)
gd.
e 2 Q
With ¢ ® = 1 T X(t ta) - E skAkz and ¢°/12 not truly independent
a é;f Al n
errors since _e—a-z depends on q, we might have ezo >< eg for example.
1o

From et X n
E;’ =X(t+0) - T [ I X(t

k=1  j=1

O T

=15



as m ~ o (no cell matching) ea? - X2 (i) .

We may then consider using the values q°/2 and X?(t+a) as bounds for

testing eaz when changing q. N, Ba to determine acceptability or for

improving ea? to obtain X*(T+g) .

4.5 Population of Cell Occupancies

With Q steps of magnitude q and N past point data sets there
are QN possible cells (i.e., An's using fixed structure). The per-
centage actually used is much smaller, say less than 1% on finite
sections of data. In digital simulation it 1s not required to store
all the possible or even expected {An} set.
For example, with N=2 and independent normally identically dis-
tributed data at Xn, X,-1 for all n with a standard deviation of O
the number of An drops from @ to 30(2Qq-30), qQ/2 > 30. An estimate
of 30 can be taken as the largest amplitude increment between succes-
sive samples.
Runs have been made on data to determine and remove trends using
data types such as
(1) monotonic increasing data of a component of velocity sampled
at 10 times per second.
(2) periodic high frequency type data from accelerometer residuals
sampled at 10 times per second.
(3) radar trajectory position data at 10 times per second.
A definite X*(t+Q) versus q relationship was difficult to

establish for various ranges of N and Ba.

=16~



4.6 Comparison of Methods A and B

It is convenient to display errors for comparison by

e =

o - 2 - 2
% rms error = % ( B ) EQ_
x

and % actual error = % ¢ * = X* -X
& X

Due to the flexibility of centering cells, it is expected that A
gives better X* (low % ecf) than B so that the possibility of cell
occupancy is more likely.
It is recalled that ea* was taken with respect to prediction (x* = An
Sy i

point sample n; only while eae in Method A was calculated over matches

not only to data set for n; but matches to data sets for all n used.
It is suggested a revised method A, say A', be examined to remedy

these situations by (1) allowing actual predictions to be calculated

over the data range and not just at ny and (2) calculating ;;; at

each prediction point, n;', from matches of past data sets to the data

set at n;' only. At each n;'>{X(T')}¥? is considered fixed allowing
o

A =X, 3§
n

- to be used with cell center fixed by {X(T')}N_1 which
o)
<® ,%

n

>
>
n
shifts with T' to make {An} set time varying with n;'.
5.0 GENERAL LINEAR PREDICTOR

"General" is taken to mean no assumption of stationarity. The

use of the general linear predictor provides a basis of comparison

for the non linear predictor.

S gE



For continuous (nonquantized) data the form of the basic system
of equations for determining the coefficients of the optimum linear

predictor (operator) are

T-a

S

. _ N -1 I-a. .
. X(t-Tn) X(t+a)dt = mEO <:Jo X(t-Tn) X(t-Tm)dt:> a_

which for sampled data becomes (with a slight abuse of notation)

0 g
N-1 a :
xk--n xk+(1 - mZO < kEO xk~n Xk_n_Dam; n=0.1 5o vy N=IIL

l

[T s I € )

k=0

It can be noted that an analogous form of equation appropriate to the

nonlinear method is given by

E‘a ” E'a
T % Xkﬁu = § (o @n(xk,..,) @m(xk,o..)]Am; n=0,1,...,M
k=0 m=o k=0
g;
< ( 2
1f we define R(E,n) = kEO xk_gxk_n, ﬁe have
{R(n.,-a)} = (R(n,m) )) {am}
(nX1) (nXm) (mX1)
so that

(a) = (R N {R(n,-0))
with ((R(n,m) )) and {R(n,-@)} both functions of o and the point from
which prediction is made.

With allowance for variable &, a comparison with the nonlinear
method indicates that for the same amount of information, linear pro-

cessing time is higher by a factor as high as 10.
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We remark that calculations at data rates higher than that pro-
vided can be afforded in all processing modes by a sliding Lagrangian
fit such as a cubic.

Finally comparisons are for all prediction points having one or
more matches in the nonlinear processing. Also, the rms values of
actual errors taken over these points are also found useful.

6.0 OBSERVATIONS, REMARKS AND CONCLUSIONS
It was found useful to use T, T r.m.s. value of observed error,

ea? % calculated over matches

associated with a given point of
prediction

A
and €A = r.m.s. value of actual error,
(ke*A)E% averaged over all x: x

available as point of prediction
is changed.
6.1 Linear
For small & , the average G} increases with N as should
be expected since the linear operator becomes potentially more limited
as the extent of the past (memory) increases. The error E; increases
by about a 1.6 factor as q goes from 1 to 2.
6.2 Nonlinear
For probability of occupancy as low as 5%, the gA remain reason-

ably fixed. For q low enough, € decreases with increased N as the

occupancy probability drops. In other words, at each prediction point
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the E; decreasing measures the degree of correct selectivity. As N

. 3 3 * 3 (3 *

increases with q high enough, large variation in actual error X - X

: A X A

is allowed. Indeed eAdecreases with increasing N while eA increases
A

by a factor of 1.5 as o goes from 1 to 2. As q decreases the €, and

E; agree. As ¢ increases the q value necessary for this agreement

increases.

. A
For low N and @ (say 1), ¢ can decrease with B& while E;

increases for the same q. Both %a and E; reduce with increased fs

A
(sampling rate) for the same effective Bd’ N, a. Also, € and E;

appear relatively insensitive to the interval between prediction points
or to the over-all span of these points, the latter effect relying on

the degree of stationarity present.

6.3 Linear Versus Nonlinear (for a given data sampling rate)

Although the linear procedure requires no quantization, comparisons
with the nonlinear method are more equitable with the nonlinear results
when this discrepancy is taken into account. Basically unless a
sufficiently low q can be used the gA values from linear processing
are lower as was the case for ¢ = 1,2 and all the N, Ba and data used.
As q lowers to favor the nonlinear error, the probability of a pre-
diction occurring falls sharply for the Bd range used.

The sample conditional expectation obtained with finite length
records and the lack of completeness with q values > o result in gaps
in the determination of the conditional expectation on which, indeed,

the prediction is based.
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A first and crude step toward overcoming this deficiency can be
taken via a two point interpolation as follows. (More exactly as N-
. n N -1
dimensional interpolation on the data sets {X(t)}o of nearest

* : N1
matches could be made to specify X (t+a) associated with {X(T)}0 ) .

We let n be the count corresponding to time t as before and
{X}nl and {X}nz be the two N-dimensional data sets having the two
smallest distances d; and d, (<d,) respectively in N-space from

{x} . We take
Ny

*
X (T'*c.) = X(t1+a) + d1 AX;
d1+da
with

X = X(ta"'a) - X(t1+a)

The minimum mean square error criterion results in the predicted value
*

X (t+o) being given by a quantized version (for determining cell
occupancy) of the sample conditional expectation E(X(t+a)|C) where C

=
is the cell whose center is determined by {X(T)}Z rather than the

-1
non-quantized version E(X(t+a) | {X(T)}Z ). We have

x*(c+a) = E(X(t+a) | ©) = J'x X(t+a) P(X(t+a) | C) dx
and for sampled data
X (t+@) = TX Pa(X|C)

With a finite stretch of data we must consider

Po(X < X < X 1) | ©) =k

2=



where Ka K.c = number of times an X(t+a) value from the g& sequence
> L]

) range given that its corres-

of X values lies within the (Xk’xk+1

ponding past data set {X(t:)}r:)-1 enters cell C.
&a . number of past data sets which enter cell C over the
b
Ea sequence of data points.

We may note here the various first order, joint and conditional

probabilities as follows:

Shortened Notation

} Cl] =K = ;
pa[xk S X <Xy | c] ce Pa(X|C)
e
PG(C) = &a .
B

PlX, < X< xk+1ﬂc] =R o SR (S Pa(X|C) =P (X,0)

a.k,
Ba
< = = {
P[xK <X xk+1] Ka.k Pa(X)
B&
< = = : =
P[clxk X< xk+1] K 1o P (X,C) Pa(clx)
P (X
e c4( )
where K and 4 are defined above and K is the number of
o,k,c Q,cC o,k

times an X value in the 3& sequence of data points lies within the

range (Xk, Xk+1).

In Method A', we have over a range of prediction points

E Pa [xk s X < xk+1,c] # Pa(xk <X< xk+1)

=12 i



since the cells overlap. 1Indeed

- < = —
(E Pa[xk SX<X 4 s e Pa(xk X< xk+1) (E Ka,k,c) Ka,k
ga
However,

Z Pa(xk S X <X Cc) = Pa(C)

*
Another approach, of course, for determining X (t+Qd) could be based
on the maximum likelihood estimator, this is, on MAX Pa(X(t+a) l C)

; -1 *
where C is the cell determined by {X(T)}Z , then X (t+a) can be taken

as Xk where k produces the maximum value of K
m+% m a,k,C.
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